Monitoring of coral reef ecosystem: an integrated approach of marine soundscape and machine learning

Presented in International Symposium on Grids & Clouds 2018

Monitoring of coral reef ecosystem: an integrated approach of marine soundscape and machine learning

 Tzu-Hao Lin1, Tomonari Akamatsu2, Frederic Sinniger3, Saki Harii3, Yu Tsao1

1Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
2National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
3Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan

Coral reefs represent the most biologically diverse marine ecosystem, however, they are vulnerable to environmental changes and impacts. Therefore, information on the variability of environment and biodiversity is essential for the conservation management of coral reefs. In this study, a soundscape monitoring network of shallow and mesophotic coral reefs was established in Okinawa, Japan. Three autonomous sound recorders were deployed in water depths of 1.5 m, 20 m, and 40 m since May 2017. To investigate the soundscape variability, we applied the periodicity-coded nonnegative matrix factorization to separate biological sounds and the other noise sources displayed on long-term spectrograms. The separation results indicate that the coral reef soundscape varied among different locations. At 1.5 m depth, biological sounds were dominated by snapping shrimp sounds and transient fish calls. Although not knowing the specific source, noises were clearly driven by tidal activities. At 20 m and 40 m depths, biological sounds were dominated by nighttime fish choruses and noises were primary related to shipping activities. Furthermore, the clustering result indicates the complexity of biological sounds was higher in mesophotic coral reefs compare to shallow-water coral reefs. Our study demonstrates that the integration of machine learning in the analysis of soundscape is efficient to interpret the variability of biological sounds, environmental and anthropogenic noises. Therefore, the conservation management of coral reefs, especially those rarely studied such as mesophotic coral reefs, can be facilitated by the long-term monitoring of coral reef soundscape.

You can also check the slides of this talk.

Advertisements

Improving biodiversity monitoring through soundscape information retrieval

Presented in International Symposium on Grids & Clouds 2018

Improving biodiversity monitoring through soundscape information retrieval

 Yu Tsao1, Tzu-Hao Lin1, Mao-Ning Tuanmu2, Joe Chun-Chia Huang2, Chia-Yun Lee2, Chiou-Ju Yao3

1Research Center for Information Technology Innovation, Academia Sinica
2Biodiversity Research Center, Academia Sinica
3National Museum of Natural Science

Passive acoustic monitoring has been suggested as an effective tool for investigating the dynamics of biodiversity. For instance, automatic detection and classification of sounds can acquire information of species occurrences and behavioral activities of vocalizing animals. However, current methods of automatic acoustic identification of species remain uncertain for most taxa, which constrains the application of remote acoustic sensing in biodiversity monitoring. One challenge is that most of the training samples more-or-less contains undesired sound signals from non-target sources. To overcome this issue, we developed a source separation algorithm based on a deep version of non-negative matrix factorization (NMF). Using multiple layers of convolutive NMF to learn spectral features and temporal modulation of sound signals from a spectrogram, vocalizations of different species can be effectively separated in an unsupervised manner. Based on the pre-trained features, acoustic activities of target species can be efficiently separated from long-duration field recordings. Besides, spectral features of each vocalizing species can also be archived for further utilizations. In this presentation, we will demonstrate the application of deep NMF on separating sounds from different species for both birds and bats. Our results show that the proposed deep NMF approach can be used to establish recognition database of vocalizing animals for soundscape-based biodiversity monitoring, confirming its promising applicability for the field of soundscape information retrieval.

Improving the evaluation of soundscape variability via blind source separation

Presented in 174th Meeting of the Acoustical Society of America @ New Orleans, USA

Improving the evaluation of soundscape variability via blind source separation

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica

Tomonari Akamatsu
National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency

Mao-Ning Tuanmu, Joe Chun-Chia Huang
Biodiversity Research Center, Academia Sinica

Chiou-Ju Yao
National Museum of Natural Science

Shih-Hua Fang
Department of Electrical Engineering, Yuan Ze University

Abstract

Evaluation of soundscape variability is essential for acoustic-based biodiversity monitoring. To study biodiversity change, many researchers tried to quantify the complexity of biological sound. However, the analysis of biological sound remains difficult because the soundscape is made up of multiple sound sources. To facilitate the acoustic analysis, we have applied non-negative matrix factorization (NMF) to separate different sound sources in an unsupervised manner. NMF is a self-learning algorithm which factorizes a non-negative matrix as a basis matrix and an encoding matrix. Based on the periodicity information learned from the encoding matrix, biological chorus and the other noise sources can be efficiently separated. Besides, vocalizations of different species can also be separated by using the encoding information learned from multiple layers of NMF and convolutive NMF. In this presentation, we will demonstrate the application of NMF-based blind source separation in the analysis of long-duration field recordings. Our preliminary results suggest that NMF-based blind source separation can effectively recognize biological and non-biological sounds without any learning database. It can also accurately differentiate different vocalizing animals and improve acoustic-based biodiversity monitoring in a noisy environment.

PNC 2017 Annual Conference and Joint Meetings

2017/11/7-9 @ Tainan, Taiwan

Computing biodiversity change via a soundscape monitoring network

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica

Yu-Huang Wang
Taiwan Academy of Ecology

Han-Wei Yen
Academia Sinica Grid Computing Centre

Sheng-Shan Lu
Taiwan Forestry Research Institute

A monitoring network for biodiversity change is essential for wildlife conservation. In recent years, many soundscape monitoring projects have been carried out to investigate the diversity of vocalizing animals. However, the acoustic-based biodiversity assessment remains challenging due to the lack of sufficient recognition database and the inability to disentangle mixed sound sources. Since 2014, an Asian Soundscape monitoring project has been initiated in Taiwan. So far, there are 15 recording sites in Taiwan and three sites in Southeast Asia, with more than 20,000 hours of recordings archived in the Asian Soundscape. In this study, we employed the visualization of long-duration recordings, blind source separation, and clustering techniques, to investigate the spatio-temporal variations of forest biodiversity in the Triangle Mountain, Lienhuachih, and Taipingshan. On the basis of blind source separation, biological sounds, with prominent diurnal occurrence pattern, can be separated from the environmental sounds without any recognition database. Thus, clusters of biological sounds can be effectively identified and employed to measure the daily change in bioacoustic diversity. Our results show that the bioacoustic diversity was higher in the evergreen broad-leaved forest. However, the seasonal variation in bioacoustic diversity was most evident in the high elevation coniferous forest. This study demonstrates that a suitable integration of machine learning and ecoacoustics can facilitate the evaluation of biodiversity changes. In addition to biological activities, we can also measure the environmental variability from soundscape information. In the future, the Asian Soundscape will not only serve as an open database for soundscape recordings, but also will provide tools for analyzing the interactions between biodiversity, environment, and human activities.

If you are interested in this research, please check the full paper published in PNC 2017.

International Symposium on Grids & Clouds 2017

2017/3/5-10 @ Academia Sinica, Taipei, Taiwan

Listening to the ecosystem: the integration of machine learning and a long-term soundscape monitoring network

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica

Yu-Huang Wang
Taiwan Biodiversity Information Facility, Biodiversity Research Center, Academia Sinica

Han-Wei Yen
Academia Sinica Grid Computing

Information on the variability of environment and biodiversity is essential for conservation management. In recent years, soundscape monitoring has been proposed as a new approach to assess the dynamics of biodiversity. Soundscape is the collection of biological sound, environmental sound, and anthropogenic noise, which provide us the essential information regarding the nature environment, behavior of calling animals, and human activities. The recent developments of recording networks facilitate the field surveys in remote forests and deep marine environments. However, analysis of big acoustic data is still a challenging task due to the lack of sufficient database to recognize various animal vocalizations. Therefore, we have developed three tools for analyzing and visualizing soundscape data: (1) long-term spectrogram viewer, (2) biological chorus detector, (3) soundscape event classifier. The long-term spectrogram viewer helps users to visualize weeks or months of recordings and evaluate the dynamics of soundscape. The biological chorus detector can automatically recognize the biological chorus without any sound template. We can separate the biological chorus and non-biological noise from a long-term spectrogram and unsupervised identify various biological events by using the soundscape event classifier. We have applied these tools on terrestrial and marine recordings collected in Taiwan to investigate the variability of environment and biodiversity. In the future, we will integrate these tools with the Asian Soundscape monitoring network. Through the open data of soundscape, we hope to provide ecological researcher and citizens an interactive platform to study the dynamics of ecosystem and the interactions among acoustic environment, biodiversity, and human activities.

5th Joint Meeting of the Acoustical Society of America and Acoustical Society of Japan

2016/11/28-12/2 @ Honolulu, USA

Acoustic response of Indo-Pacific humpback dolphins to the variability of marine soundscape

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica

Shih-Hau Fang
Department of Electrical Engineering, Yuan Ze University

Chih-Kai Yang, Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University

Marine mammals can adjust their vocal behaviors when they encounter anthropogenic noise. The acoustic divergence among different populations has also been considered as the effect of ambient noise. The recent studies discover that the marine soundscape is highly dynamic; however, it remains unclear how marine mammals alter their vocal behaviors under various acoustic environments. In this study, autonomous sound recorders were deployed in western Taiwan waters between 2012 and 2015. Soundscape scenes were unsupervised classified according to acoustic features measured in each 5 min interval. Non-negative matrix factorization was used to separate different scenes and to inverse the temporal occurrence of each soundscape scene. Echolocation clicks and whistles of Indo-Pacific humpback dolphins, which represent the only marine mammal species occurred in the study area, were automatically detected and analyzed. The preliminary result indicates the soundscape scenes dominated by biological sounds are correlated with the acoustic detection rate of humpback dolphins. Besides, the dolphin whistles are much complex when the prey associated scene is prominent in the local soundscape. In the future, the soundscape information may be used to predict the occurrence and habitat use of marine mammals.

Ecoacoustics 2016

2016/6/5-8 @ University of Michigan

Investigation on the dynamics of soundscape by using unsupervised detection and classification algorithms

Tzu-Hao Lin, Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University, Repubic of China (Taiwan)

Yu-Huang Wang
Biodiversity Research Center, Academia Sinica, Repubic of China (Taiwan)

Soundscape has been proposed as a potential information source to study the variability of biodiversity. However, analysis of the soundscape is a challenging task when there is no sufficient database to recognize various sounds collected from long duration recordings. Previous researches have measured several acoustic diversity indexes to quantify the variation of biodiversity, but the acoustic diversity indexes are still difficult to interpret without any ground truth. In this study, we propose to analyze the composition of soundscape scenes and visualize the dynamics of soundscape by using unsupervised detection and classification algorithms. Different soundscape scenes were classified according to the tonal sounds, pulsed sounds, and acoustic features obtained from long-term spectrogram. By adjusting the variation explained through classification results, the number of soundscape scenes will be automatically determined. The unsupervised classifier has been employed to analyze the soundscape dynamics in several forests and shallow marine environments in Taiwan. Our results demonstrate that the seasonal and diurnal changing patterns of geophony, biophony, and anthrophony can be effectively investigated. Besides, the spatial change of soundscape can also be discriminated according to the composition of soundscape scenes. After the biophony scenes have been identified, we can apply the same classifier again to measure the complexity of biological sounds and examine the variability of biodiversity. The current approach provides researchers and managers a visualization platform to monitor the dynamics of soundscape and to study the interactions among acoustic environment, biodiversity, and human activities in the future.