New article online: The effects of continuously acoustical stress on cortisol in milkfish

The effects of continuously acoustical stress on cortisol in milkfish (Chanos Chanos)

General and Comparative Endocrinology (2017)
https://doi.org/10.1016/j.ygcen.2017.07.018

Chih An Wei, Yi-Ta Shao*
Institute of Marine Biology, National Taiwan Ocean University

Tzu-Hao Lin
Research Center for Information Technology Innovation, Academia Sinica

Ruo Dong Chen
Institute of Cellular and Organismic Biology, Academia Sinica

Yung-Che Tseng
Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica

Strong underwater acoustic noise has been known that may cause hearing loss and actual stress in teleost. However, the long-term physiological effects of relatively quiet but continuously noise on fish were less understood. In present study, milkfish, Chanos chanos, were exposed to the simulated-wind farm noise either quiet (109 dB re 1 μPa / 125.4 Hz; approx. 10-100m distant from the wind farm) or noisy (138 dB re 1 μPa / 125.4 Hz; nearby the wind farm) conditions for 24 hr, 3 days and 1 week. Comparing to the control group (80 dB re 1 μPa / 125.4 Hz), the fish exposed to noisy conditions had higher plasma cortisol levels in the first 24 hr. However, the cortisol levels of 24 hr spot returned to the resting levels quickly. The fish exposed under noisy condition had significantly higher head kidney star (steroidogenic acute regulatory) and hsd11b2 (11-β-hydroxysteroid dehydrogenase 2) mRNA levels at the following treatment time points. In addition, noise exposure did not change hypothalamus crh (Corticotropin-releasing hormone) mRNA levels in this experiment. The results implied that the weak but continuously noise was a potential stressor to fish, but the impacts may be various depending on the sound levels and exposure time. Furthermore, this study showed that the continuous noise may up-regulate the genes that are related to cortisol synthesis and possibly make the fish more sensitive to ambient stressors, which may influence the energy allocation appearance in long-term exposures.

New article online: Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings

Our new article has been published on Scientific Reports! In this article, we introduce a novel machine learning tool, the periodicity coded nonnegative matrix factorization (PC-NMF). The PC-NMF can separate biological sounds from a noisy long-term spectrogram in an unsupervised approach, therefore, it is a great tool for evaluating the dynamics of soundscape and facilitating the soundscape-based biodiversity assessment.

You can download the MATLAB codes of PC-NMF and test data in the supplementary dataset of our article.

Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings

Scientific Reports 7, 4547 (2017) doi:10.1038/s41598-017-04790-7

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan (R.O.C.)

Shih-Hua Fang
Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)

Investigating the dynamics of biodiversity via passive acoustic monitoring is a challenging task, owing to the difficulty of identifying different animal vocalizations. Several indices have been proposed to measure acoustic complexity and to predict biodiversity. Although these indices perform well under low-noise conditions, they may be biased when environmental and anthropogenic noises are involved. In this paper, we propose a periodicity coded non-negative matrix factorization (PC-NMF) for separating different sound sources from a spectrogram of long-term recordings. The PC-NMF first decomposes a spectrogram into two matrices: spectral basis matrix and encoding matrix. Next, on the basis of the periodicity of the encoding information, the spectral bases belonging to the same source are grouped together. Finally, distinct sources are reconstructed on the basis of the cluster of the basis matrix and the corresponding encoding information, and the noise components are then removed to facilitate more accurate monitoring of biological sounds. Our results show that the PC-NMF precisely enhances biological choruses, effectively suppressing environmental and anthropogenic noises in marine and terrestrial recordings without a need for training data. The results may improve behaviour assessment of calling animals and facilitate the investigation of the interactions between different sound sources within an ecosystem.

 

International Symposium on Grids & Clouds 2017

2017/3/5-10 @ Academia Sinica, Taipei, Taiwan

Listening to the ecosystem: the integration of machine learning and a long-term soundscape monitoring network

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica

Yu-Huang Wang
Taiwan Biodiversity Information Facility, Biodiversity Research Center, Academia Sinica

Han-Wei Yen
Academia Sinica Grid Computing

Information on the variability of environment and biodiversity is essential for conservation management. In recent years, soundscape monitoring has been proposed as a new approach to assess the dynamics of biodiversity. Soundscape is the collection of biological sound, environmental sound, and anthropogenic noise, which provide us the essential information regarding the nature environment, behavior of calling animals, and human activities. The recent developments of recording networks facilitate the field surveys in remote forests and deep marine environments. However, analysis of big acoustic data is still a challenging task due to the lack of sufficient database to recognize various animal vocalizations. Therefore, we have developed three tools for analyzing and visualizing soundscape data: (1) long-term spectrogram viewer, (2) biological chorus detector, (3) soundscape event classifier. The long-term spectrogram viewer helps users to visualize weeks or months of recordings and evaluate the dynamics of soundscape. The biological chorus detector can automatically recognize the biological chorus without any sound template. We can separate the biological chorus and non-biological noise from a long-term spectrogram and unsupervised identify various biological events by using the soundscape event classifier. We have applied these tools on terrestrial and marine recordings collected in Taiwan to investigate the variability of environment and biodiversity. In the future, we will integrate these tools with the Asian Soundscape monitoring network. Through the open data of soundscape, we hope to provide ecological researcher and citizens an interactive platform to study the dynamics of ecosystem and the interactions among acoustic environment, biodiversity, and human activities.

5th Joint Meeting of the Acoustical Society of America and Acoustical Society of Japan

2016/11/28-12/2 @ Honolulu, USA

Acoustic response of Indo-Pacific humpback dolphins to the variability of marine soundscape

Tzu-Hao Lin, Yu Tsao
Research Center for Information Technology Innovation, Academia Sinica

Shih-Hau Fang
Department of Electrical Engineering, Yuan Ze University

Chih-Kai Yang, Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University

Marine mammals can adjust their vocal behaviors when they encounter anthropogenic noise. The acoustic divergence among different populations has also been considered as the effect of ambient noise. The recent studies discover that the marine soundscape is highly dynamic; however, it remains unclear how marine mammals alter their vocal behaviors under various acoustic environments. In this study, autonomous sound recorders were deployed in western Taiwan waters between 2012 and 2015. Soundscape scenes were unsupervised classified according to acoustic features measured in each 5 min interval. Non-negative matrix factorization was used to separate different scenes and to inverse the temporal occurrence of each soundscape scene. Echolocation clicks and whistles of Indo-Pacific humpback dolphins, which represent the only marine mammal species occurred in the study area, were automatically detected and analyzed. The preliminary result indicates the soundscape scenes dominated by biological sounds are correlated with the acoustic detection rate of humpback dolphins. Besides, the dolphin whistles are much complex when the prey associated scene is prominent in the local soundscape. In the future, the soundscape information may be used to predict the occurrence and habitat use of marine mammals.

Ecoacoustics 2016

2016/6/5-8 @ University of Michigan

Investigation on the dynamics of soundscape by using unsupervised detection and classification algorithms

Tzu-Hao Lin, Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University, Repubic of China (Taiwan)

Yu-Huang Wang
Biodiversity Research Center, Academia Sinica, Repubic of China (Taiwan)

Soundscape has been proposed as a potential information source to study the variability of biodiversity. However, analysis of the soundscape is a challenging task when there is no sufficient database to recognize various sounds collected from long duration recordings. Previous researches have measured several acoustic diversity indexes to quantify the variation of biodiversity, but the acoustic diversity indexes are still difficult to interpret without any ground truth. In this study, we propose to analyze the composition of soundscape scenes and visualize the dynamics of soundscape by using unsupervised detection and classification algorithms. Different soundscape scenes were classified according to the tonal sounds, pulsed sounds, and acoustic features obtained from long-term spectrogram. By adjusting the variation explained through classification results, the number of soundscape scenes will be automatically determined. The unsupervised classifier has been employed to analyze the soundscape dynamics in several forests and shallow marine environments in Taiwan. Our results demonstrate that the seasonal and diurnal changing patterns of geophony, biophony, and anthrophony can be effectively investigated. Besides, the spatial change of soundscape can also be discriminated according to the composition of soundscape scenes. After the biophony scenes have been identified, we can apply the same classifier again to measure the complexity of biological sounds and examine the variability of biodiversity. The current approach provides researchers and managers a visualization platform to monitor the dynamics of soundscape and to study the interactions among acoustic environment, biodiversity, and human activities in the future.

Oceanoise Asia 2016

2016/4/20

Characterization of the marine soundscape at the core habitat of Indo-Pacific humpback dolphins

Tzu-Hao Lin, Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University

Shane Guan
Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD, USA

The soundscape in shallow waters displays a high level of spatial variation due to the difference in ocean environments, biological communities, and human activities. Many marine animals rely on sound for orientation; therefore, the soundscape has been hypothesized as one of the environmental indicators for marine animals. The population of Indo-Pacific humpback dolphins in western Taiwan waters is critically endangered. The anthropogenic noise might alter the marine soundscape evidently. However, the importance of soundscape for the habitat selection of cetacean remains unclear until now. In this study, underwater recorders were deployed in inshore waters to compare the difference of soundscape between the core habitat and non-core habitat of humpback dolphins. The result indicates that the composition of soundscape scene is different among our recording stations. At the core habitat, soundscape was characterized by the nighttime chorus of croakers and the quiet ambient sound in the daytime. On the contrary, snapping shrimp sounds represent the most dominated sound at the non-core habitats. The current result indicates that humpback dolphins prefer soundscape dominated by the chorus of their prey resources. The potential impacts of human activities on marine soundscape should be carefully evaluated in the future.

Conference presentation: 21st Biennial Conference on the Biology of Marine Mammals

13-18 Dec 2015

A noisy dinner? Passive acoustic monitoring on the predator-prey interactions between Indo-Pacific humpback dolphins and croakers

Tzu-Hao Lin, Wen-Ching Lien, Chih-Kai Yang, and Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University

Shane Guan
Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD, USA

The spatio-temporal dynamics of prey resources have been considered as important factors for shaping the distribution and behavior of odontocetes. Indo-Pacific humpback dolphin (Sousa chinensis) is a costal species, which primary feeds on benthic croakers. It has been hypothesized that the distribution pattern and periodic occurrence of humpback dolphins are results of their prey movement. However, the interactions between humpback dolphins and croakers remain unclear. During May 2013 and November 2014, underwater sound recordings were collected in western Taiwan waters. Croaker choruses and humpback dolphin echolocation clicks were automatically detected using custom developed algorithms. Both croaker choruses and dolphin clicks were frequently detected in shallow estuarine waters during spring and summer. In addition, shorter inter-click intervals were detected with higher frequencies in these areas, indicating more likely foraging behavior. Current results suggest that the core habitats of humpback dolphins show an agreement with the areas of prominent croaker chorus. Diurnal cycle analysis showed that croaker choruses were most evident after sunset to until approximately 4 A.M. In estuarine waters, humpback dolphin clicks were most frequently detected during the nighttime, with reduced detection rates after 8 A.M. This suggests that the diurnal behavior of humpback dolphins could be associated with the calling behavior of croakers. Although whether the position of a calling croaker could be passively localized by a dolphin remains unknown, our results indicate that the foraging probability of humpback dolphins may be elevated during the nighttime chorus of croakers. Information regarding the spatio-temporal dynamics of croaker chorus can be important for the conservation management of humpback dolphins. Further details on the predator-prey interactions between humpback dolphins and croakers can be investigated by using hydrophone arrays.

Poster (pdf)