Listening to the deep: Exploring marine soundscape variability by information retrieval techniques

Presentation in the session of Lidar and Passive observing sensors, Oceans’18 Kobe

Listening to the deep: Exploring marine soundscape variability by information retrieval techniques

Tzu-Hao Lin1,2, Yu Tsao2

1Department of Marine Biodiversity Research, Japan Agency of Marine-Earth Science and Technology, Yokosuka, Japan
2Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

Information on the dynamics of the deep-sea ecosystem is essential for conservation management. The marine soundscape has been considered as an acoustical sensing
platform to investigate geophysical events, marine biodiversity, and human activities. However, analysis of the marine soundscape remains difficult because of the influence of simultaneous sound sources. In this study, we integrated machine learning-based information retrieval techniques to analyze the variability of the marine soundscape off northeastern Taiwan. A long-term spectral average was employed to visualize the longduration recordings of the Marine Cable Hosted Observatory (MACHO). Biotic and abiotic soundscape components were separated by applying periodicity-coded nonnegative matrix factorization. Finally, various acoustic events were identified
using k-means clustering. Our results show that the MACHO recordings of June 2012 contain multiple sound sources. Cetacean vocalizations, an unidentified biological chorus, environmental noise, and system noise can be accurately separated without an audio recognition database. Cetacean vocalizations were primarily detected at night, which is consistent with the detection results of two rule-based detectors. The unidentified biological chorus, ranging between 2 and 3 kHz, was primarily recorded between 7 p.m. and midnight during the studied period. On the basis of source separation, more acoustic events can be identified in the clustering result. The proposed
information retrieval techniques effectively reduce the difficulty in the analysis of marine soundscape. The unsupervised approach of source separation and clustering can improve the investigation regarding the temporal behavior and spectral characteristics of different sound sources. Based on the findings in the present study, we believe that variability of the deep-sea ecosystem can be efficiently investigated by combining the
soundscape information retrieval techniques and cabled hydrophone networks in the future.

Full text is available at:


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s