New article online: Automatic classification of delphinids based on the representative frequencies of whistles

Our new article which introduce a new method of using representative frequency distribution to classify delphinid species has been published in the Journal of Acoustical Society of America. Please contact me if you are interested in the pdf copy or the algorithm.

Automatic classification of delphinids based on the representative frequencies of whistles

J. Acoust. Soc. Am. 138, 1003 (2015);

Tzu-Hao Lin, Lien-Siang Chou
Institute of Ecology and Evolutionary Biology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

Classification of odontocete species remains a challenging task for passive acoustic monitoring. Classifiers that have been developed use spectral features extracted from echolocation clicks and whistle contours. Most of these contour-based classifiers require complete contours to reduce measurement errors. Therefore, overlapping contours and partially detected contours in an automatic detection algorithm may increase the bias for contour-based classifiers. In this study, classification was conducted on each recording section without extracting individual contours. The local-max detector was used to extract representative frequencies of delphinid whistles and each section was divided into multiple non-overlapping fragments. Three acoustical parameters were measured from the distribution of representative frequencies in each fragment. By using the statistical features of the acoustical parameters and the percentage of overlapping whistles, correct classification rate of 70.3% was reached for the recordings of seven species (Tursiops truncatus, Delphinus delphis, Delphinus capensis, Peponocephala electra, Grampus griseus, Stenella longirostris longirostris, and Stenella attenuata) archived in In addition, correct classification rate was not dramatically reduced in various simulated noise conditions. This algorithm can be employed in acoustic observatories to classify different delphinid species and facilitate future studies on the community ecology of odontocetes.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s